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Abstract

The mechanical behavior of two packaging paper materials subjected to tensile loading up to complete breakage has

been investigated. A model for isotropic strain hardening elastic anisotropic plasticity, coupled to anisotropic damage,

is discussed. The constitutive relations, including a gradient enhanced damage model, are developed within a ther-

modynamical framework. The Helmholtz free energy in the continuum is assumed to depend not only on the strain and

stress components but also on the damage in the material.

The model has been analyzed in a non-linear finite element procedure. The capability of the model to properly

capture and simulate the failure of a paper material subjected to tensile loading is demonstrated by means of several

numerical examples that are compared to, and verified with, experiments on packaging paper specimens of varying

geometry.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Packaging paper is the generic name for various types of paper used for packaging goods. The material

known as corrugated board is made by a conversion process in which three or more layers of paper are

laminated together. Corrugated cases are the cases manufactured from corrugated board sheets. Corru-

gated cases are principally used for transport packaging, as distinct from consumer packaging. The middle

ply, which is called fluting, is corrugated during the process and the outer layers, called the liners, are glued

to the peaks of the middle ply, thus making a liner-fluting-liner sandwich. The resulting structure is light but

strong, with particular resistance to edge-wise compressive loading applied perpendicular to the manu-
facturing direction. This property gives the finished case a high ‘‘stacking strength’’. Packaging paper

consists of a network of short cellulose fibres and is usually made by dewatering a cellulose fibre suspension

on a wire. The fibres have an inherent capability to form bonds between them without any additives.
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During manufacturing, the fibres tend to align themselves in the running direction of the wire and

consequently bonded somewhat side-by-side in the cross-direction of the paper web. At a macroscopic level

the material is often approximated as being orthotropic, i.e. having three mutually perpendicular planes of

symmetry. The principal directions of material symmetry of paper are defined as machine direction (MD),
which is the direction along the running web, cross-direction (CD), perpendicular to MD cross the web and

the thickness direction (Z), Fig. 1.

Kraftliner and Testliner are the two main categories of liner materials. Kraftliner is a high-strength

paper, made mainly from unbleached or bleached sulfate pulp. Testliner is made entirely from recycled

fibres and was introduced originally as a substitute for Kraftliner. Fig. 2 shows SEM-photographs of the

fibre network in the two materials.

When using acoustic emission monitoring (cf. Gradin et al., 1997) during uniaxial tensile testing of a

paper specimen it is observed that stress waves start to emit at quite an early stage of loading. The source of
these stress waves is believed to be the rapid relaxation of stresses close to a small fracture site, e.g. at a

fibre/fibre bond or at a fibre. When the density of these fracture sites becomes significant, they will affect the

mechanical properties of the paper. This is the motivation for applying what is commonly referred to as

continuum damage mechanics on a paper material.

In continuum damage mechanics, the influence of damage on the mechanical properties is assumed

represented by a set of continuous internal variables. The basic idea in continuum damage mechanics is that

material degradation, or damage, can be described in a ‘‘smeared out’’ sense. Historically this idea dates

back to a paper by Kachanov (1958) where creep rupture in terms of a continuously growing damage
parameter was discussed. In recent years, the concept of damage mechanics has been extended to aniso-

tropic materials. Isotropic damage is referred to the situation where the degradation of the elastic stiffness

tensor depends on a single parameter and the damage growth rate also depends on a single parameter. For

a generally anisotropic damage representation, a forth-rank damage tensor (cf. Lemaitre and Chaboche,

1990) has to be invoked.

It is possible to identify at least two damage processes for paper materials, e.g. fibre/fibre bond failure

and fibre breakage. Generally, if it is assumed that both these processes are possible, it is necessary to

include one set of damage variables (probably entirely different in both number and nature) for each
process and also different criteria for onset of damage and different evolution laws. In this study it is as-

sumed that there is one dominating damage process during tensile loading of a paper structure, even though

there is nothing assumed about the nature of the actual damage process.

During acoustic emission monitoring of a paper specimen it is possible to get an approximate picture of

the distribution of acoustic events along the length of the specimen. At some point the damage growth

(acoustic events) will localize to a narrow band. If the conditions are such that this localization will not lead

to unstable rupture, the specimen will exhibit a smooth descending load–elongation curve.

In experiments it has been observed that before the onset of acoustic emission (damage growth), the
stress strain curve will deviate from linear behavior and upon unloading there will be a permanent

deformation. One will, in addition to damage growth, also have another irreversible process commonly (but
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Fig. 1. The principal directions of material symmetry in paper.



Fig. 2. Fibre network of Kraftliner (a) and Testliner (b). The magnification of the samples is 80· and the length indicator in the black

area corresponds to 0.5 mm.
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perhaps not correctly in this context) referred to as plasticity. One should have in mind that the mechanical
processes on a micro-level in paper are different from those in, say, ductile metals. However, in order to

avoid confusion, these processes are within this investigation referred to as plasticity processes.

The initial yield stress in MD is often different from that in CD and from Z. It has further been observed

that paper materials show rather strong direction dependence also regarding the damage behavior as the

onset of damage growth under continued tensile loading in MD is generally different from that in CD and

from Z. In order to get a realistic description of the mechanical behavior of a mechanically loaded paper

structure one have to combine an anisotropic model for damage evolution and an anisotropic model for

plasticity.
The aim of this investigation has been to evaluate the applicability of the concept of continuum damage

mechanics for analysis of packaging paper in tension. It is well known that paper materials behaves dif-

ferently when loaded in compression than in tension. Analysis of a compressive loading situation is a

subject of a forthcoming study.

The present investigation includes identification of a suitable constitutive model for the considered

materials and implementation of a numerical scheme arising in the solution of the boundary value problem.

In addition, mechanical testing of packaging paper materials has also been carried out.
2. Theory and constitutive equations

2.1. Non-local theory: gradient enhanced approach

For a so-called local action approach one assumes that the mechanical state of the material at a given
arbitrary point is independent of the state of the rest of the body, i.e. it is described only by the values of
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some fields at that point. Following such a point of view, in traditional models of damage mechanics, a

damage variable enters the list of constitutive quantities (i.e. the description of the state).Its evolution is

ruled by an ordinary differential equation. For models of this type, a problem of ill-posedness arises,

namely balance equations loose their ellipticity at the transition from hardening to softening behavior.
Strain localization phenomena occur in thin domains. Detailed discussions upon this topic are found in,

among others, (cf. Pijaudier-Cabot and Bazant, 1987; Peerlings et al., 1996; Geers, 1997; Steinmann and

Carol, 1998; de Borst et al., 1999; Kuhl and Ramm, 1999; Ganghoffer and de Borst, 2000; Comi, 2001; or

Engelen et al., 2003). In the context of finite element solution techniques, one observes that the dissipation

evaluated numerically vanishes as the mesh is refined.

Many investigators have tried to solve this problem and various models have been proposed. Successful

attempts on the introduction of so-called non-local quantities into constitutive equations were proposed by

Kr€oner (1967) and also by Eringen and Edelen (1972). Following their idea, the non-local counterpart �s in a
point x of a local state variable s over an entire problem domain X with respect to a weight function x is

defined by (cf. Pijaudier-Cabot and Bazant, 1987)
�sðxÞ ¼ 1

WðxÞ

Z
X

xðnÞsðxþ nÞdXðxÞ: ð1Þ
The factor W�1ðxÞ with WðxÞ defined by
WðxÞ ¼
Z

X
xðnÞdXðxÞ; ð2Þ
scales �s such that it equals s for a homogenous state in the material. For simplicity the weight function x is

often (and also in this investigation) assumed to be homogenous and isotropic, i.e. it depends only on the

distance r ¼ jx� nj. However, the weight function x may also be defined so as to include an anisotropic

behavior.

The local state variable s can be developed in a Taylor series around x and substituted into Eq. (1)

resulting in a truncated explicit partial differential equation
�sðxÞ ¼ sðxÞ þ cDsðxÞ ð3Þ
where the Laplacian operator is defined as D ¼ r2 ¼
P

i
o2

ox2i
.

Peerlings et al. (1996) approximated the explicit formulation in Eq. (3) with an implicit formulation

resulting in an inhomogeneous elliptic equation
�sðxÞ � cD�sðxÞ ¼ sðxÞ; ð4Þ
where terms of order four and higher have been neglected.

Since the non-local variable �s depends implicitly on the corresponding local variable s, Eq. (4) is referred
to as the implicit gradient enhancement. For a study of various gradient enhanced formulations the

interested reader is referred to Geers (1997), among others.
Throughout in the present study it is assumed that all non-local quantities (variables having a super-

posed bar, as in �s) admits at least Fr�echet derivative. This is an inevitably necessity: if that would not be the

case Eq. (4) could not make sense.

The gradient parameter c in Eq. (4) is given by c ¼ l2=2, where l is a characteristic length parameter that

determines the volume that contributes significantly to the non-local state variable and must therefore be

related to the scale of the micro-structure in the paper material. The introduction of a material charac-

teristic length fixes the width of the zone in which localization occur, thus preventing localization into a

vanishingly small region with zero energy dissipation. As in the case for the weight function x, the gradient
parameter c may also be defined anisotropic. However, for simplicity c is in this investigation assumed

homogeneous and isotropic.
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The solution of the implicit non-local state variable �s requires additional boundary conditions. Commonly

(cf. Lasry and Belytschko, 1988; or M€uhlhaus and Aifantis, 1991) the natural Neumann type boundary

condition of a vanishing gradient is used along the boundary C surrounding the entire problem domain X,
nr�s ¼ 0: ð5Þ

Here, n is the normal to the boundary C. It should be underlined that a physical interpretation of this

boundary condition is not clear, cf. Peerlings et al. (1996) or Kuhl et al. (2000).

2.2. Continuum damage coupled to plasticity

A common concept in most continuum damage theories (cf. Cordebois and Sidoroff, 1982; Hansen and

Schreyer, 1994; or Zhu and Cescotto, 1995) is the so-called elastic energy equivalence principle, postulating

that ‘‘the elastic energy of a damaged material is the same form as that of an undamaged material except
that the stress rij (strain) is replaced by the effective stress r̂ij (effective strain)’’.

Introducing a forth order damage tensor Mijkl, the relation between the stress tensor rij in the damage

space and the stress tensor r̂ij in the effective stress space can be written as,
r̂ij ¼ Mijklrkl: ð6Þ

Accordingly, the relation between the elastic strain tensor eeij and the effective elastic strain tensor êeij is

given by êeij ¼ M�1
ijkle

e
kl.

There are several ways to define the tensor Mijkl. The formulation used in this investigation, proposed by

Chow and Wang (1987), offers a simplified analysis if the principal directions of orthotropic damage are

assumed to be aligned with the principal axes of orthotropic plasticity. The inverse of Mijkl is written on a

6 · 6 matrix format as
M�1 ¼

1�D1 0 0 0 0 0

0 1�D2 0 0 0 0

0 0 1�D3 0 0 0

0 0 0 ð1�D1Þ1=2ð1�D2Þ1=2 0 0

0 0 0 0 ð1�D1Þ1=2ð1�D3Þ1=2 0

0 0 0 0 0 ð1�D2Þ1=2ð1�D3Þ1=2

2
6666664

3
7777775

ð7Þ

The damage in the material is represented by internal variables Di, corresponding to a material degradation

in each orthotropic principal direction i of the material, 06Di 6 1, where Di ¼ 0 corresponds to a virgin

element while Di ¼ 1 corresponds to a fully damaged element.

Since the main objective is to develop constitutive equations for a plastic-damaged material, attention is
confined to a purely mechanical theory assuming isothermal processes. It is often assumed (see among

others; Lemaitre, 1985; or Maugin, 1992) that the Helmholz free energy in the material can be divided into

several independent parts. The free energy associated with plastic flow and the free energy associated with

damage processes are in this investigation assumed independent of each other. An expression for the total

Helmholz free energy density w can be written as
w ¼ weðrij;DiÞ þ wpðepe Þ þ wdðDeÞ: ð8Þ

Here, we is the elastic energy, wp is the free energy due to plastic hardening and wd is the free energy due to

damage hardening. epe is an accumulated effective plastic strain and the variable De is an effective measure of

damage.
The thermodynamic force Yi conjugated to damage is often referred to as the ‘‘damage energy release

rate’’ and is defined by
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Yi ¼ � owe

oDi
: ð9Þ
The force Yi is regarded as the damaging driving-force and is understood to control the evolution of the

damage. This definition is analogous to the definition of ‘‘fracture energy release rate’’ commonly used in

theories of fracture mechanics.

Packaging paper materials are (as discussed in the introduction) considered as solids containing many

long fibres connected in a network. At any point, those fibres apply non-local actions. It seems reasonable
to assume that the mechanical state in one particular point in a fibre is dependent upon the mechanical

states in the neighboring fibre network, or along the fibre itself. Hence, beside the numerical arguments

discussed in Section 2.1, introduction of a non-local state variable is also supported by physical arguments

in fibrous materials.

The idea of Kr€oner (1967) and Eringen and Edelen (1972) of introducing non-local quantities into a

constitutive equation has been applied to continuum damage mechanics by several authors, among others

Pijaudier-Cabot and Bazant (1987). For the damage model discussed in this investigation, a gradient en-

hanced damage energy release rate Yi is introduced. Considering the local damage energy release rate Yi as a
state variable, Eq. (4) is restated as
Y iðxÞ � cDY iðxÞ ¼ YiðxÞ; ð10Þ
where c ¼ l2=2 and l is the internal length scale of the gradient enhancement.

The natural boundary condition of a vanishing gradient along all the entire boundary C of X is used,
nrY i ¼ 0 ð11Þ
It is convenient to introduce the plastic hardening threshold H and the damage strengthening threshold R as

the thermodynamic forces associated with wp and wd, respectively, i.e.
H ¼ dwp

depe
and R ¼ dwd

dDe

: ð12Þ
A decomposition of the Helmholtz free energy according to Eq. (8) yields the well-known Clausius–Duhem

inequality on a reduced form
U ¼ rij depij � H depe � Y i dDi � RdDe P 0 ð13Þ
where U is the mechanical dissipation.
A common way of ensuring the fulfillment of the Clausius–Duhem inequality U P 0 consists of pos-

tulating the existence of convex, continuous and scalar valued potential functions / dependent on all the

thermodynamical forces with the internal state variables appearing as parameters, cf. Voyiadjis and Kattan

(1992). Within the assumption of independence of energy dissipations U is divided into two parts

U ¼ Up þ Ud, where
Up ¼ rijdepij � Hdepe � kp/p P 0; ð14Þ
and
Ud ¼ �Y idDi � RdDe � kd/d P 0: ð15Þ
Here, the plastic and damage multipliers kp; kd P 0 are introduced and they are determined by the con-

sistency requirements d/p ¼ d/d ¼ 0 together with the loading/unloading conditions /p ¼ /d ¼ 0. As
indicated by Eqs. (14) and (15) represents /p the plastic yield criterion and /d represents the damage

criterion.
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As the reduced Clausius–Duhem inequality fulfill UP 0, meaning that the production of internal en-

tropy always is positive, the chosen model is admissible from a thermodynamic point of view. Hence, the

model is thermodynamically consistent.
2.3. Anisotropic plasticity

The plastic processes are commonly assumed connected to the effective stress space since the effective

stress r̂ij is referred to a surface in the material that really transmits the internal forces, (see amid others

Simo and Ju, 1987; Ju, 1989; Lemaitre and Chaboche, 1990; or Contrafatto and Cuomo, 2002).

Assuming the material axes of orthotropy coincides with the principal axes, Hill’s yield criterion (Hill,

1950) offers a convenient way to introduce anisotropic plasticity. The yield surface is in this case given by

the expression
/p ¼ r̂e � H 6 0; ð16Þ
where r̂e is the anisotropic equivalent stress defined in analogy with the J2-flow theory of plasticity,
r̂e ¼ ry0ð̂sijPijklŝklÞ1=2: ð17Þ
The plastic threshold Hðêpe Þ is as the maximum value that the anisotropic equivalent stress r̂e has reached

during the deformation history (with the initial value ry0), thus representing an isotropic strain hardening

plasticity behavior of the material. The isotropic hardening represents a global expansion in the size of the

yield surface with no change in shape. The threshold H can often be determined from experiments.

The deviatoric effective stress tensor is given by ŝij ¼ r̂ij � dijr̂kk=3. Here repeated index assumes sum-

mation and dij is the Kronecker delta. The positive definite tensor Pijkl for orthotropic materials can be

represented by a 6 · 6 matrix P,
P ¼

p12 þ p13 �p12 �p13 0 0 0

�p12 p12 þ p23 �p23 0 0 0

�p13 �p23 p23 þ p13 0 0 0

0 0 0 p4 0 0
0 0 0 0 p5 0

0 0 0 0 0 p6

2
6666664

3
7777775
; ð18Þ
where p12, p13, p23, p4, p5, p6 are parameters characterizing the current state of plastic anisotropy. In the

particular case when 3p12 ¼ 3p13 ¼ 3p23 ¼ p4 ¼ p5 ¼ p6 ¼ 3=ð2r2
y0Þ this yield criterion is reduced to the J2 -

theory of plasticity.

The outward normal of the yield surface is given by
o/p

or̂ij
¼

r2
y0

r̂e

Pijklŝkl: ð19Þ
Normality of the plastic strain increment requires that
dêpij ¼ kp o/
p

or̂ij
: ð20Þ
As the hardening is assumed being isotropic, kp may be determined from a uniaxial tensile test with the test

specimen oriented in the material directions. Thus, kp is assigned different values depending on the direction
of loading. For a uniaxial tensile test in the x1-direction, consider the stress state r̂11 ¼ r̂ ¼ r̂e, all other

r̂ij ¼ 0, and ê11 ¼ êe11 þ êp11 ¼ ê. One finds
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kp ¼ 3ry0

2r̂E
ðE=Et � 1Þdr̂; ð21Þ
where E is the elastic modulus in the loading direction of the material and Et ¼ dr̂=dê is the tangent

modulus for the uniaxial tensile test at the stress level r̂ ¼ r̂e > ry0.

Since dr̂e ¼ ðr2
y0=r̂eÞ̂sijPijkldr̂kl, the expression for the plastic strain increment dêpij in a general form can

be written as
dêpij ¼ c
3r4

y0

2r̂2
eE

ðE=Et � 1ÞPijklŝklŝmnPmnop dr̂op; ð22Þ
where
c ¼ 1 for r̂e ¼ H and dr̂e P 0
0 else

	
ð23Þ
Assuming a modified uniaxial Ramberg–Osgood relation ê ¼ r̂=E þ ry0ðr̂=ry0Þn the relation E=Et may be

written as
E=Et ¼ ðr̂e=ry0Þn�1
; ð24Þ
where nP 1 denote the hardening exponent in the test direction.

Generally, if the paper material exhibits different hardening behavior in different material directions and

the body is subjected to a multiaxial loading situation, the model needs to be extended with a model for

anisotropic hardening in which case multiaxial material parameters have to be invoked, cf. Xia et al. (2002).

The elastic strain increment in the effective stress space is given by dêeij ¼ C�1
ijkldr̂kl. The inverse of the

orthotropic stiffness tensor Cijkl is on a 6 · 6 matrix format written as
C�1 ¼

E�1
1 �m12E�1

1 �m13E�1
1 0 0 0

�m21E�1
2 E�1

2 �m23E�1
2 0 0 0

�m31E�1
3 �m32E�1

3 E�1
3 0 0 0

0 0 0 ð2G12Þ�1
0 0

0 0 0 0 ð2G13Þ�1
0

0 0 0 0 0 ð2G23Þ�1

2
6666664

3
7777775

ð25Þ
where Ei represents the in-plane elastic modulus, mij are the in-plane Poisson�s ratios and Gij denotes the in-

plane shear modulus.

The total strain increment in the effective space is given as the sum of the elastic and plastic strain

increments, dêij ¼ dêeij þ dêpij. Using the elastic stress–strain relationship, written in the form

dr̂ij ¼ Cijklðdêkl � dêpklÞ, yields for plastic yielding
dr̂ij ¼ Cijkldêkl � hCijklPklmnŝmnŝopPopqrdr̂qr; ð26Þ

where
h ¼
3r4

y0

2r̂2
eE

ðE=Et � 1Þ: ð27Þ
Multiplication of this expression by ŝijPijkl leads to an equation from which the inner product ŝijPijkldr̂kl is

determined as a function of the effective strain increment dêmn
ŝijPijkldr̂kl ¼
ŝijPijklCklmn

1þ hŝopPopqrCqrstPstuvŝuv
dêmn: ð28Þ
Substituting Eq. (28) into Eq. (26) gives the well-known elastic–plastic incremental stress–strain relation
dr̂ij ¼ Cijstdêst � lCijklPklmnŝmnŝopPopqrCqrstdêst ¼ Cep
ijstdêst; ð29Þ
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where Cep
ijkl is the incremental elastic–plastic stiffness tensor in the effective space and
l ¼
h

1þ hŝijPijklCklmnPmnopŝop
for r̂e ¼ H and dr̂e P 0;

0 else:

8<
: ð30Þ
2.4. Anisotropic damage evolution

Assuming that the material axes of orthotropy coincides with the principal axes, a damage criterion in

the form of a quadratic homogeneous convex function of the gradient enhanced damage release rate Y i

offers a convenient way to model orthotropic damage evolution,
/d ¼ Y e � R6 0: ð31Þ

One may note the similarity between Eq. (31) and the corresponding criterion for plastic flow, Eq. (16). The

equivalent non-local damage energy release rate Y e is defined as
Y e ¼ ðY iJijY j=2Þ1=2; ð32Þ

where Jij is a second order positive damage characteristic tensor that will be discussed later.

The threshold RðDeÞ is interpreted as the maximum value that Y e has reached during the deformation

history (with the initial value Y0), representing a damaging hardening material.

The criterion in Eq. (31) was initially introduced on local form by Cordebois and Sidoroff (1982) and
further discussed in Chow and Wang (1987), Hansen and Schreyer (1994) or Zhu and Cescotto (1995)

among others. It should be underlined that the only difference between the present criterion and the cri-

terion introduced by Cordebois and Sidoroff (1982) is the presence of the non-local damage energy release

rate Y i, which is the non-local counterpart of the local damage energy release rate Yi ¼ �r̂mnC�1
mnklor̂kl=oDi

(Eq. (11)).

Using an associated law, normality of the damage increments requires that
dDi ¼ �kd o/
d

oY i
ð33Þ
and
dDe ¼ �kd o/
d

oR
: ð34Þ
The multiplier kd can be determined from experiments by applying the consistency requirement d/d ¼ 0

and the loading/unloading condition /d ¼ 0.

The damage characteristic tensor Jij has been extensively discussed in the literature and many formu-

lations have been suggested. A comprehensive review of the most widely used expressions is presented in
Voyiadjis and Park (1997). However, a symmetric damage characteristic tensor Jij of second order,

introduced by Zhu and Cescotto (1995), is believed to be applicable for the circumstances discussed here.

The characteristic tensor Jij is on 3 · 3 matrix format written as
J ¼ 2

g1 ðg1g2Þ1=2 ðg1g3Þ1=2

ðg1g2Þ1=2 g2 ðg2g3Þ1=2

ðg1g3Þ1=2 ðg2g3Þ1=2 g3

2
64

3
75: ð35Þ
Here, gi depends on the damage evolution history in the material in direction i.
For an equivalent damage formulation, the total damage work W performed at time t should be the same

as the equivalent damage work performed at time t, i.e.
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W ¼
Z DiðtÞ

0

Y i dDi ¼
Z DeðtÞ

0

Y e dDe: ð36Þ
Then, according to Zhu and Cescotto (1995),
gi ¼ ðY e=Y iÞ2: ð37Þ
Two different damage evolution laws is utilized in the present investigation:

(i) A linear damage evolution law on the form (cf. Zhu and Cescotto, 1995),
dDe

dY e

¼ ke: ð38Þ
(ii) An exponential damage evolution law on the form (cf. Geers, 1997),
dDe

dY e

¼ keð1� DeÞ: ð39Þ
Here, ke is the equivalent damage hardening value.
3. Numerical implementation

The above-described constitutive relations have been used to analyze the mechanical behavior of paper

materials. The governing equations have been solved using the finite element method. The finite element

computations have been performed with the mathematical programMatlab (2002). A state of plane stress is
considered throughout in the computations.

The constitutive laws described in the preceding sections have been implemented for a two-dimensional

solid material element. Four-node isoparametric elements, with two degrees of freedom, translation in the

x1- and x2-directions, have been utilized.

Pertinent material property data for the various materials, obtained in tensile tests, have been used in the

simulations.

An iterative technique has been employed to solve the discretized equilibrium equations for each load

step. The result obtained after each iteration then correspond to estimates of the incremental displacements
from which the currents stress and strain states can be computed at the integration points of each finite

element, as well as estimates of the non-local damage energy release rate. The deformations are assumed to

remain small, so all derivatives and integrals are evaluated with respect to the initial topology of the

considered body.

A modified Newton–Raphson iteration scheme for the solution of non-linear finite element equations

has been employed (cf. Bathe, 1982). The governing finite element equation is
KA ¼ R� F; ð40Þ
where K is the global stiffness matrix, A is the global vector consisting of nodal displacement variables and

non-local damage energy release rates, R is the vector of externally applied nodal point loads and F rep-

resents the vector of nodal point forces equivalent to the element stresses. It should be noted that at each

node the displacement field, as well as the non-local damage energy release rates, are represented by vec-

torial fields.

The finite element implementations follows mainly the ones discussed in Peerlings et al. (1996) and Geers

(1997) for the enhanced gradient model. For easy-to-use manuals of the implementations the reader is
advised to Peerlings et al. (2000) or Geers (1997).
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The relation in Eq. (40) is employed to calculate increments in the displacements and non-local damage

energy release rates, which then is used to evaluate approximations corresponding to time (or load step)

t þ Dt,
tþDtKði�1ÞDAðiÞ ¼ tþDtR� tþDtFði�1Þ; ð41Þ

where
tþDtAðiÞ ¼ tþDtAði�1Þ þ DAðiÞ: ð42Þ
The superscript (i) denote the iteration number value and the vector DAðiÞ represents the increment in the

solution variable at iteration (i). This results in a system of linear algebraic equations, which are solved at

each equilibrium iteration. The iterations are continued until appropriate convergence criteria are satisfied

(cf. Bathe, 1982; or Cook et al., 1989).

As a consequence of the assumption that the relation between the stresses in the damage space and the
effective space is given by rij ¼ M�1

ijklr̂kl, a linearized expression for the stress increments at load step t þ Dt
of the stress tensor rij is obtained as
ðtþDtÞDrij ¼ ðtÞM�1
ijkl

ðtþDtÞDr̂kl þ ðtÞDM�1
ijkl

ðtÞr̂kl: ð43Þ
4. Experiments

Two types of commercial packaging paper were investigated in terms of load–elongation curves. The
objective was to determine the applicability of the model derived. Of particular interest is transferability, i.e.

that one set of model parameters can describe the mechanical response of significantly different geometries.

4.1. Test set-up and test procedure

An MTS Universal Tensile Testing Machine, equipped with a pair of wide clamps, was used to measure

the load–elongation response, Fig. 3. Locking pins at the center of the front jaws keep the clamps in an

open position during mounting of the specimen. After positioning of the specimen the upper and lower

clamp are closed and the pressure is applied by tightening four equally spaced quick-acting locking nuts
along the front of each clamp. The largest sample that can be accommodated is 420 mm wide.
Fig. 3. Universal tensile tester equipped with a pair of wide clamps.
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The load frame is equipped with a 2 kN load cell. Specimens were tested by traversing the lower cross-

head down to place the sample under increasing load at a constant cross-head speed at nominal strain rate

of 20%/min. The samples were pre-loaded up to 1 N, before recording of data started.

During testing, both displacement and load was monitored and recorded. The load was measured by the
load cell and the elongation by recording the cross-head movement. A computer was used to control the

load frame and also to record data during the testing. All tests were run to failure.

Mechanical testing of paper must be carried out under humidity and temperature control, in order to

obtain reproducible results since paper is strongly influenced by moisture. The climate used was 23 �C and

50% RH and is in accordance with ISO 187. The samples were conditioned for at least 48 h in this climate

prior to testing.
4.2. Materials and manufacturing of the specimen

Two types of packaging paper materials were examined. One denoted Kraftliner, i.e. paper mainly made

of unbleached sulfate pulp, and one denoted Testliner consisting entirely of recycled fibres. Some important

properties of the material are listed in Table 1.
Standard methods were used to test structural properties. The standards used are ISO 534 for thickness

and ISO 536 for basis weight.

Four different specimen geometries have been used: a rectangular geometry having a width of 15 mm and

a gauge length of 100 mm, a specimen with a notch radius of 5 mm, width 50 mm and a gauge length of 10

mm, a specimen with a semi-circular notch of radius 5 mm having an outer width of 50 mm and a gauge

length of 40 mm, and a specimen with a semi-circular notch of radius 31.75 mm having an outer width of

133 mm and a gauge length of 126 mm. The specimens, illustrated in Fig. 4, are from now on denoted

specimen I–IV, respectively.
Table 1

Some material properties

Thickness Basis weight Average fibre length Recycle fibre content Virgin fibre content

Kraftliner 0.164 mm 125 kg/m2 1.25 mm 30% 70%

Testliner 0.185 mm 127 kg/m2 1.06 mm 100% 0%

Fig. 4. Considered specimen (I–IV) geometries.
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The notched samples were used in order to control the localization of failure. Two different sizes of

notched specimens (III and IV) have been used in order to evaluate the transferability between different

geometries.

The specimens denoted I and IV were fabricated using a razor knife, whereas specimens II and III where
manufactured using a punch. Normally five specimens of each type were tested in each in-plane material

direction, i.e. both in MD and CD.
5. Limitations and general and additional assumptions

As discussed in the experiment section, the Kraftliner paper specimens are about 0.164 mm thick,

whereas the Testliner paper specimens are about 0.185 mm thick. Hence, as the thickness of the specimens is

negligible in comparison to the width and the lengths of the specimens, a state of plane stress is considered

throughout the computations.

For simplicity, the material is assumed to have the same behavior in Z as in CD, which significantly
reduces the complexity when determining the material parameters.

It is possible to identify at least two damage processes for paper materials, e.g. fibre/fibre bond failure

and fibre breakage. In this study it is assumed that there is one dominating damage process during tensile

loading of a paper structure, even though there is nothing assumed about the nature of it.

If the material exhibits different hardening behavior in different material directions and the body is

subjected to a multiaxial loading situation, the model needs to be extended with a model for anisotropic

hardening whereupon new material parameters have to be invoked.
6. The model

6.1. Calibration of the constitutive model and determination of material parameters

The calibration procedure of the constitutive model is briefly explained here. Because the model is two-

dimensional, only in-plane material constants needs to be determined. The model parameters were deter-

mined using load–elongation curves obtained for the two different specimens I and II (see Fig. 4).

The materials were tested in both in-plane material directions, i.e. both MD and CD.

The specimen denoted specimen I is a slender geometry resulting in an approximately uniaxial stress
state when loaded in tension. This type is used for determining the elastic constants of the material and to

estimate the initial yield stress and hardening parameters of the plasticity model. Values of the Poisson’s

ratios have been taken from literature (Baum et al., 1981) together with the demands of symmetry imposed

on the stiffness tensor Cijkl, i.e. m21=E1 ¼ m12=E2. The in-plane shear modulus G12 is assigned the value
G12 ¼
ðE1E2Þ1=2

2½1þ ðm12m21Þ1=2	
; ð44Þ
following the results reported by Szilard (1974). The in-plane yield shear stress is in all computations as-

signed the value 3�1=2ry0, cf. Hill (1950).

The damage hardening parameters were obtained from the descending part of load–elongation curves,

obtained in tension tests using specimen II. This part of the curve can only be obtained if the damage

process is stable (or semi-stable). In a stable damage process, the stress continuously decreases as the

displacement is increased up to total separation of two fracture surfaces. For packaging paper materials,
this behavior can only be obtained at a relatively short gauge length, cf. Tryding (1996). If the gauge length
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is too long, lots of elastic energy will be stored in the specimen prior to peak load and released in an

unstable manner at a post peak-load elongation. Specimens denoted specimen II has been used in order to

measure the load–elongation response in the descending regime. These specimens proved to be capable of

generating stable descending curves for the considered materials.
A numerical procedure has been implemented in order to fit the equivalent damage hardening para-

meters ke to the measured load–elongation curves.

6.2. Boundary conditions

The symmetry of the specimens and the loading conditions allow us to model only a quarter of the

specimen geometries. The dimensions for a portion of the test specimens I and II, in the x1- and x2-
directions, are as shown in Fig. 5.

The natural boundary condition of a vanishing gradient is adopted on all edges,
nrY i ¼ 0: ð45Þ

In addition to the boundary condition in Eq. (45), the edges A, B, and C are subjected to the boundary

conditions
A : u ¼ r12 ¼ 0;
B : v ¼ r12 ¼ 0;
C : v ¼ 0 and u ¼ U :

8<
: ð46Þ
The displacements u and v are in the x1- and x2-directions, respectively. The normal traction is zero only

along edge D, which is the only traction free surface in the model.

At edge C the nodes are constrained to a straight vertical line between the two corner nodes, which are

given the prescribed displacement U . All the nodes along edge C are also constrained to have zero dis-

placement in the x2-direction, i.e. v ¼ 0 along C. To preserve vertical compatibility, the nodes along edge
A are constrained to have zero displacement in the x1-direction, i.e. u ¼ 0 along A.

In addition, the nodes along edge A are free to move in the x2-direction.
As a result of the imposed boundary conditions on specimen I, the stress field is nearly homogeneous

leading to a simultaneous initiation of damage growth throughout the specimen. To avoid this, an initial

imperfection is introduced in the specimen in a small region in the center of the specimen in order to trig

and localize damage initiation. The region containing an initial imperfection, or damage, of D1 ¼ D2 ¼ 0:02
Fig. 5. Schematic representations of portions of the modeled test specimens I and II.
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occupies the region 49:06 x1 6 50:0 mm and 6:436 x2 6 7:5 mm, corresponding to a fraction of 0.3% of the

total specimen volume.

6.3. The characteristic length l

Generally, mesh refinement leads to localized deformation in a region of decreasing volume if damage is

invoked in the constitutive equations. When the gradient enhanced approach is adapted (i.e. l > 0) this

problem is avoided and the density of the finite element mesh is not crucial, cf. Geers (1997) or Kuhl and

Ramm (1999). Hence, the constitutive model requires a material parameter l of dimension length (i.e. a

characteristic length that controls the extent of the zone in which localization occur). However, there exist

no obvious physical interpretation of this parameter. It is desirable to find an inherent property of the

material that can be related to this parameter.
Fig. 6 shows a SEM picture of a damaged region in a Testliner specimen III loaded in CD until failure.

An intuitive choice is to relate the gradient length l to the mean fibre length in the material. This

assumption has to some extent support from previous investigations. Niskanen et al. (2001) showed in an

experimental investigation, that the width of the damage band, developing when a paper specimen is loaded

in tension until failure, is governed by the fibre length. Their experiments were conducted on so-called

handsheets, i.e. in-plane isotropic sheets manufactured in a laboratory environment.

Niskanen et al. concluded that the damage width is linearly proportional to the mean fibre length.

However, the authors underlined that the damage width also can be affected by other factors such as the
mechanical properties of the fibres and manufacturing conditions.

As the fibre length average (see Table 1) for Kraftliner and for Testliner both are on the same order of

magnitude (
1 mm) one expects, according to the results reported by Niskanen et al. (2001), that the

characteristic length l is almost the same for Kraftliner and for Testliner.

During the course of this investigation, it has been found that the value l ¼ 2 mm generates reasonable

correspondence between the experiments and the numerical analysis for both Kraftliner and Testliner. This

result indicates that the characteristic length parameter in a gradient enhanced approach can be related to

the average fibre length in the paper material as the value of l equals approximate l 
 2lf where lf is the
average fibre length.

6.4. Results of parameter estimation

The experiments have been analyzed in a FE model in order to verify the measured material parameters.

The finite element meshes used for the material parameter verification computations are shown in Fig. 7.
Fig. 6. Damaged region in a Testliner specimen III loaded in CD. The magnification of the sample is 80· and the length indicator in the

black area corresponds to 0.5 mm.
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Fig. 8 displays load–elongation curves obtained from the uniaxial tensile test using specimen I made of

the two paper materials and loaded in MD and CD, respectively, together with numerical results. The
Fig. 7. Finite element meshes used for the material parameter verification. The meshes consists of 350 elements (specimen I) and 92

elements (specimen II).
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Fig. 8. Load–elongation curves obtained from the uniaxial tensile tests using specimen I made of Kraftliner (a) and Testliner (b).

Computed results are also displayed.
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exponential damage evolution law in Eq. (39) has been utilized. The computed onsets of damage growth are

also indicated. As Fig. 8 illustrates, excellent agreement prevails between the measured load–elongation

curves and the numerical results.

The experimentally obtained descending curves using specimen II are compared to numerical results
from FE computations (Fig. 9) when three different values of the equivalent hardening parameter ke have
been employed (ke ¼ 1; 5; 20 (MPamm)�1 for Kraftliner and ke ¼ 10; 20; 30 (MPamm)�1 for Testliner).

A conclusion one may draw from Fig. 9 is that an equivalent damage hardening value ke ¼ 5

(MPamm)�1 for Kraftliner and ke ¼ 20 (MPamm)�1 for Testliner describes the damage hardening in the

specimen reasonable well in both MD and CD. For simplicity, the damage hardening is assumed to be the

same in the principal directions of the material (compare with isotropic strain hardening), i.e. k1 ¼ k2 ¼ ke.
The material parameters determined from tensile experiments using specimens I + II and by numerical

studies are summarized in Tables 2 and 3 (MD is along the x1-direction).
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Fig. 9. Numerical results obtained with different values of the hardening parameter ke compared to experimentally obtained descending

curves. Kraftliner loaded in MD (a) and CD (b). Testliner loaded in MD (c) and CD (d).

Table 2

Material parameters obtained from tensile experiments using specimen I

Kraftliner Testliner

E1 1280 MPamm 900 MPamm

E2 470 MPamm 400 MPamm

m12 0.46 0.46

r1
y0 4.5 MPamm 3.6 MPamm

r2
y0 2.0 MPamm 1.8 MPamm

n1 1.8 2.2

n2 3.0 4.8



Table 3

Material parameters determined by numerical studies using specimen I + II. The initial threshold parameters for damage growth in the

x1- and x2-direction are denoted Y10 and Y20 respectively

Kraftliner Testliner

Y10 0.16 MPamm 0.11 MPamm

Y20 0.05 MPamm 0.04 MPamm

ke 5 (MPamm)�1 20 (MPa mm)�1

l 2 mm 2 mm
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6.5. The damage evolution law

Two damage evolution laws implemented have been compared; the linear evolution law (Eq. (38)) and

the exponential evolution law (Eq. (39)).

The total evolution of the equivalent damage De at time t according to the two laws is slightly different.

For the linear evolution law one have (Y0 is the initial damage threshold value)
Fig. 10

menta
DeðtÞ ¼ ke½Y eðtÞ � Y0	; ð47Þ
and for the exponential evolution law one have
DeðtÞ ¼ 1� e�keðY eðtÞ�Y0Þ: ð48Þ
The last mentioned damage law is naturally bounded meaning that it allows continuous description of fully

damaged material as the resulting damage is close to (but remain smaller than) 1. Hence, the exponential

damage evolution law is particular convenient from a numerical point of view since it allows the stiffness

matrix of the structure to remain regular.

This feature can also been seen in Fig. 10 where normalized load–elongation curves for a specimen II
loaded in CD and made of Testliner is displayed. When using the exponential evolution law, the computed

load–elongation path is smooth and follows the descending part down to total breakage of the specimen. In

contrast, when the linear damage law is used the stiffness matrix becomes irregular at an earlier load step,

leading to an earlier (modeled) breakage of the specimen.
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It can be mentioned here that an ongoing laboratory investigation by the authors (Gradin and Isaksson,

submitted) reveals that the exponential damage evolution law utilized is supported by acoustic emission

monitored experiments on uniaxial tensile loaded isotropic paper sheets.

As can be seen in Fig. 10 does the exponential damage evolution law capture the descending part rea-
sonable well and this lends confidence to the chosen model.
7. Verification of the model

Of particular interest is transferability, i.e. that one set of model parameters can describe the mechanical

behavior of significantly different geometries. Experiments, as well as numerical analyses, have been made

using specimens III and IV (illustrated in Fig. 11) in order to investigate the transferability.

The boundary conditions are as in Eqs. (45) and (46). The finite element meshes for specimens III and IV

are as shown in Fig. 12.

In all the computations the material is modeled as an orthotropic material with an elastic–plastic yield

criterion (Eq. (16)) and a damage criterion (Eq. (31)). The material parameters are as presented in Tables 1–

3 and an exponential damage evolution law is utilized (Eq. (39)). The specimens, both in Kraftliner and
Testliner, are loaded in MD and CD.
Fig. 11. Schematic representation of portions of modeled specimens III and IV.
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7.1. Analysis of results

Fig. 13 presents computed load–elongation curves together with experimentally obtained curves for the

discussed specimens, materials and loading directions. In each plot, the four cases belonging to the same

material are displayed. Also displayed are the computed loads for onset of damage growth marked.
The exponential damage evolution law used seems to describe almost entirely correct the descending part

of the load–elongation curves. As can be seen in Fig. 13, the numerically obtained and the experimentally

measured load–elongation curves show good agreement.

From now on, we restrict the presented results to specimen III only. The results obtained in analyses on

specimen IV are similar and, for the sake of clarity, excluded in the following discussion.

Fig. 14 show typical damage distributions in specimen III calculated for the considered loading cases.

The damage component displayed is the largest of D1 and D2. The plots presented in Fig. 14 are contour

plots showing the damage at the load step when the first element becomes fully damaged (¼ onset of
breakage), i.e. when maxfD1;D2g ! 1. Note that only contour lines corresponding to damage levels of 0.2,

0.5 and 0.8 are shown.
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Fig. 13. Load–elongation plots for specimens III and IV. The numerical results are displayed together with experimentally obtained

values. Kraftliner (a) and Testliner (b).
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It can also be noted in Fig. 14 that the damage is more concentrated to the interior of specimen III when

the specimen is loaded in CD than in MD. When the specimen is loaded in MD, the highest level of damage
is located close to the boundary of the notches, whereas when the specimen is loaded in CD the highest

levels of damage is located at about 1/2 mm (Kraftliner) and 1 mm (Testliner) from the notch boundary.

Fig. 15 shows computed damage evolutions at the point in the material that exhibits the highest level of

damage for respective loading case. The results are calculated at different locations in the modeled

geometry, depending on loading direction and paper material, according to Fig. 14.

When the specimen is loaded in CD is maxfD1gP maxfD2g, whereas the opposite holds when the

specimen is loaded in MD. Hence, if damage growth has occurred, the computed levels of damage are

always equal or higher in the cross-direction of the material than in the machine direction, independently of
loading direction.

To illustrate the problem of localization, a comparison of the total damage growth of D1 when l ¼ 0

and l ¼ 2 when utilizing two different mesh densities is shown in Fig. 16. In this particular case is a Kraft-

liner loaded in CD until complete breakage. As indicated in Fig. 16, mesh refinement leads to localized
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Fig. 14. Damage contours immediately before onset of breakage of specimen III. Kraftliner loaded in MD (a) and CD (b). Testliner

loaded in MD (c) and CD (d).
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deformation in a region of decreasing volume along the x2-axis. When the gradient enhanced approach is

adapted, i.e. l > 0, this problem is avoided. The region of localization is stretched over several elements and

the density of the finite element mesh is not crucial.
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Fig. 17. Relative equivalent stress contours immediately before breakage of specimen III. As the area is darker the stress is higher.

Kraftliner loaded in MD (a) and CD (b). Testliner loaded in MD (c) and CD (d).

P. Isaksson et al. / International Journal of Solids and Structures 41 (2004) 4731–4755 4753
In Fig. 17 are the relative Hill equivalent stress r̂e=maxfr̂eg contours displayed for the same cases as in
Fig. 14. The highest concentration of equivalent stress r̂e is located immediately at the notch boundaries in
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the specimens. However, when the specimen is loaded in CD, the region with the highest equivalent stress

concentration is larger in size and concentrated to a narrow band around x1 ¼ 0 along the x2-axis.
When the specimen is loaded in MD, the region with the highest concentration of equivalent stress r̂e is

located at the notch boundaries and concentrated to a smaller region in comparison to when the specimen is
loaded in CD. It is worth noticing that the plastic strains are relatively larger in the interior of the specimen

when it is loaded in CD as compared to when the it is loaded in MD. This may have consequences for the

subsequent crack nucleation that has been observed in the experiments, as high density of plastic strains is

detrimental to the integrity of the specimen.
8. Conclusions

The mechanical behavior of two packaging paper materials subjected to tensile loading up to complete

breakage has been studied.

A model for isotropic strain hardening elastic anisotropic plasticity, coupled to anisotropic damage, is
discussed. The model has been analyzed in a non-linear finite element procedure.

The constitutive relations, including a gradient enhanced damage model, are developed within a ther-

modynamical framework and the Helmholtz free energy in the continuum is assumed to depend not only on

the strain and stress components but also on the damage in the material.

The following conclusions are made:

• The capability of the model to properly capture and simulate the damage mechanism of a paper material

is demonstrated by means of several numerical examples which are compared to, and verified with,
experiments on paper specimens of varying geometry.

• The results demonstrate the ability of the model to model irreversible deformations up to complete

breakage of tensile loaded paper specimens.

• The model can be calibrated using load–elongation curves obtained from tensile testing.

• The exponential damage evolution law utilized seems to describe the descending part of load–elongation

curves reasonable well.

• The density of the finite element mesh is not crucial as an introduction of a material characteristic length

fixes the width of the zone in which damage localizes, thus preventing strain localization into a vanish-
ingly small region with zero energy dissipation.

• The results indicate that a characteristic length parameter in a gradient enhanced approach can be re-

lated to the average fibre length in a paper material. It has been found that a value of l equals approx-
imate l 
 2lf where lf is the average fibre length, generates reasonable correspondence between the

experiments and the numerical analysis.
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