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Abstract

The mechanical behavior of two packaging paper materials subjected to tensile loading up to complete breakage has
been investigated. A model for isotropic strain hardening elastic anisotropic plasticity, coupled to anisotropic damage,
is discussed. The constitutive relations, including a gradient enhanced damage model, are developed within a ther-
modynamical framework. The Helmholtz free energy in the continuum is assumed to depend not only on the strain and
stress components but also on the damage in the material.

The model has been analyzed in a non-linear finite element procedure. The capability of the model to properly
capture and simulate the failure of a paper material subjected to tensile loading is demonstrated by means of several
numerical examples that are compared to, and verified with, experiments on packaging paper specimens of varying
geometry.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Packaging paper is the generic name for various types of paper used for packaging goods. The material
known as corrugated board is made by a conversion process in which three or more layers of paper are
laminated together. Corrugated cases are the cases manufactured from corrugated board sheets. Corru-
gated cases are principally used for transport packaging, as distinct from consumer packaging. The middle
ply, which is called fluting, is corrugated during the process and the outer layers, called the liners, are glued
to the peaks of the middle ply, thus making a liner-fluting-liner sandwich. The resulting structure is light but
strong, with particular resistance to edge-wise compressive loading applied perpendicular to the manu-
facturing direction. This property gives the finished case a high ‘“stacking strength”. Packaging paper
consists of a network of short cellulose fibres and is usually made by dewatering a cellulose fibre suspension
on a wire. The fibres have an inherent capability to form bonds between them without any additives.
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During manufacturing, the fibres tend to align themselves in the running direction of the wire and
consequently bonded somewhat side-by-side in the cross-direction of the paper web. At a macroscopic level
the material is often approximated as being orthotropic, i.e. having three mutually perpendicular planes of
symmetry. The principal directions of material symmetry of paper are defined as machine direction (MD),
which is the direction along the running web, cross-direction (CD), perpendicular to MD cross the web and
the thickness direction (Z), Fig. 1.

Kraftliner and Testliner are the two main categories of liner materials. Kraftliner is a high-strength
paper, made mainly from unbleached or bleached sulfate pulp. Testliner is made entirely from recycled
fibres and was introduced originally as a substitute for Kraftliner. Fig. 2 shows SEM-photographs of the
fibre network in the two materials.

When using acoustic emission monitoring (cf. Gradin et al., 1997) during uniaxial tensile testing of a
paper specimen it is observed that stress waves start to emit at quite an early stage of loading. The source of
these stress waves is believed to be the rapid relaxation of stresses close to a small fracture site, e.g. at a
fibre/fibre bond or at a fibre. When the density of these fracture sites becomes significant, they will affect the
mechanical properties of the paper. This is the motivation for applying what is commonly referred to as
continuum damage mechanics on a paper material.

In continuum damage mechanics, the influence of damage on the mechanical properties is assumed
represented by a set of continuous internal variables. The basic idea in continuum damage mechanics is that
material degradation, or damage, can be described in a “smeared out” sense. Historically this idea dates
back to a paper by Kachanov (1958) where creep rupture in terms of a continuously growing damage
parameter was discussed. In recent years, the concept of damage mechanics has been extended to aniso-
tropic materials. Isotropic damage is referred to the situation where the degradation of the elastic stiffness
tensor depends on a single parameter and the damage growth rate also depends on a single parameter. For
a generally anisotropic damage representation, a forth-rank damage tensor (cf. Lemaitre and Chaboche,
1990) has to be invoked.

It is possible to identify at least two damage processes for paper materials, e.g. fibre/fibre bond failure
and fibre breakage. Generally, if it is assumed that both these processes are possible, it is necessary to
include one set of damage variables (probably entirely different in both number and nature) for each
process and also different criteria for onset of damage and different evolution laws. In this study it is as-
sumed that there is one dominating damage process during tensile loading of a paper structure, even though
there is nothing assumed about the nature of the actual damage process.

During acoustic emission monitoring of a paper specimen it is possible to get an approximate picture of
the distribution of acoustic events along the length of the specimen. At some point the damage growth
(acoustic events) will localize to a narrow band. If the conditions are such that this localization will not lead
to unstable rupture, the specimen will exhibit a smooth descending load—elongation curve.

In experiments it has been observed that before the onset of acoustic emission (damage growth), the
stress strain curve will deviate from linear behavior and upon unloading there will be a permanent
deformation. One will, in addition to damage growth, also have another irreversible process commonly (but
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Fig. 1. The principal directions of material symmetry in paper.



P. Isaksson et al. | International Journal of Solids and Structures 41 (2004) 4731-4755 4733

Fig. 2. Fibre network of Kraftliner (a) and Testliner (b). The magnification of the samples is 80x and the length indicator in the black
area corresponds to 0.5 mm.

perhaps not correctly in this context) referred to as plasticity. One should have in mind that the mechanical
processes on a micro-level in paper are different from those in, say, ductile metals. However, in order to
avoid confusion, these processes are within this investigation referred to as plasticity processes.

The initial yield stress in MD is often different from that in CD and from Z. It has further been observed
that paper materials show rather strong direction dependence also regarding the damage behavior as the
onset of damage growth under continued tensile loading in MD is generally different from that in CD and
from Z. In order to get a realistic description of the mechanical behavior of a mechanically loaded paper
structure one have to combine an anisotropic model for damage evolution and an anisotropic model for
plasticity.

The aim of this investigation has been to evaluate the applicability of the concept of continuum damage
mechanics for analysis of packaging paper in tension. It is well known that paper materials behaves dif-
ferently when loaded in compression than in tension. Analysis of a compressive loading situation is a
subject of a forthcoming study.

The present investigation includes identification of a suitable constitutive model for the considered
materials and implementation of a numerical scheme arising in the solution of the boundary value problem.
In addition, mechanical testing of packaging paper materials has also been carried out.

2. Theory and constitutive equations
2.1. Non-local theory: gradient enhanced approach

For a so-called local action approach one assumes that the mechanical state of the material at a given
arbitrary point is independent of the state of the rest of the body, i.e. it is described only by the values of
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some fields at that point. Following such a point of view, in traditional models of damage mechanics, a
damage variable enters the list of constitutive quantities (i.e. the description of the state).Its evolution is
ruled by an ordinary differential equation. For models of this type, a problem of ill-posedness arises,
namely balance equations loose their ellipticity at the transition from hardening to softening behavior.
Strain localization phenomena occur in thin domains. Detailed discussions upon this topic are found in,
among others, (cf. Pijaudier-Cabot and Bazant, 1987; Peerlings et al., 1996; Geers, 1997; Steinmann and
Carol, 1998; de Borst et al., 1999; Kuhl and Ramm, 1999; Ganghoffer and de Borst, 2000; Comi, 2001; or
Engelen et al., 2003). In the context of finite element solution techniques, one observes that the dissipation
evaluated numerically vanishes as the mesh is refined.

Many investigators have tried to solve this problem and various models have been proposed. Successful
attempts on the introduction of so-called non-local quantities into constitutive equations were proposed by
Kroner (1967) and also by Eringen and Edelen (1972). Following their idea, the non-local counterpart 7 in a
point x of a local state variable t over an entire problem domain @ with respect to a weight function o is
defined by (cf. Pijaudier-Cabot and Bazant, 1987)

() = g [ 0@+ &) d), (n
The factor ¥~ '(x) with ¥(x) defined by
v = [ oo)dam. ®)

scales 7 such that it equals 7 for a homogenous state in the material. For simplicity the weight function w is
often (and also in this investigation) assumed to be homogenous and isotropic, i.e. it depends only on the
distance » = |x — £|. However, the weight function w may also be defined so as to include an anisotropic
behavior.

The local state variable 7 can be developed in a Taylor series around x and substituted into Eq. (1)
resulting in a truncated explicit partial differential equation

7(x) = 1(x) + cAt(x) 3)

where the Laplacian operator is defined as A = V> = >, %
Peerlings et al. (1996) approximated the explicit formulation in Eq. (3) with an implicit formulation
resulting in an inhomogeneous elliptic equation

7(x) — cAT(x) = 1(x), (4)

where terms of order four and higher have been neglected.

Since the non-local variable T depends implicitly on the corresponding local variable 7, Eq. (4) is referred
to as the implicit gradient enhancement. For a study of various gradient enhanced formulations the
interested reader is referred to Geers (1997), among others.

Throughout in the present study it is assumed that all non-local quantities (variables having a super-
posed bar, as in 7) admits at least Fréchet derivative. This is an inevitably necessity: if that would not be the
case Eq. (4) could not make sense.

The gradient parameter c in Eq. (4) is given by ¢ = [?/2, where [ is a characteristic length parameter that
determines the volume that contributes significantly to the non-local state variable and must therefore be
related to the scale of the micro-structure in the paper material. The introduction of a material charac-
teristic length fixes the width of the zone in which localization occur, thus preventing localization into a
vanishingly small region with zero energy dissipation. As in the case for the weight function w, the gradient
parameter ¢ may also be defined anisotropic. However, for simplicity ¢ is in this investigation assumed
homogeneous and isotropic.
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The solution of the implicit non-local state variable 7 requires additional boundary conditions. Commonly
(cf. Lasry and Belytschko, 1988; or Miihlhaus and Aifantis, 1991) the natural Neumann type boundary
condition of a vanishing gradient is used along the boundary I" surrounding the entire problem domain £,

nVzT =0. (5)

Here, n is the normal to the boundary I'. It should be underlined that a physical interpretation of this
boundary condition is not clear, cf. Peerlings et al. (1996) or Kuhl et al. (2000).

2.2. Continuum damage coupled to plasticity

A common concept in most continuum damage theories (cf. Cordebois and Sidoroff, 1982; Hansen and
Schreyer, 1994; or Zhu and Cescotto, 1995) is the so-called elastic energy equivalence principle, postulating
that “the elastic energy of a damaged material is the same form as that of an undamaged material except
that the stress o;; (strain) is replaced by the effective stress ¢;; (effective strain)”.

Introducing a forth order damage tensor M;;,, the relation between the stress tensor ¢;; in the damage
space and the stress tensor ¢;; in the effective stress space can be written as,

&ij = A/ffjkzo'k1~ (6)

Accordingly, the relation between the elastic strain tensor &j; and the effective elastic strain tensor & is
given by & = M &5,

There are several ways to define the tensor M;;,. The formulation used in this investigation, proposed by
Chow and Wang (1987), offers a simplified analysis if the principal directions of orthotropic damage are
assumed to be aligned with the principal axes of orthotropic plasticity. The inverse of M, is written on a

6 x 6 matrix format as

1-D;, 0 0 0 0 0
0 1-D, 0 0 0 0
B 0 0 1-Ds 0 0 0
Mo=1 o 0 0 (1-D)(1-Dy)" 0 0
0 0 0 0 (1-D))"*(1=Dy)"? 0

0 0 0 0 0 (1—D,)"*(1=Dy)"?

()
The damage in the material is represented by internal variables D;, corresponding to a material degradation
in each orthotropic principal direction i of the material, 0 < D; <1, where D; = 0 corresponds to a virgin
element while D; = 1 corresponds to a fully damaged element.

Since the main objective is to develop constitutive equations for a plastic-damaged material, attention is
confined to a purely mechanical theory assuming isothermal processes. It is often assumed (see among
others; Lemaitre, 1985; or Maugin, 1992) that the Helmholz free energy in the material can be divided into
several independent parts. The free energy associated with plastic flow and the free energy associated with
damage processes are in this investigation assumed independent of each other. An expression for the total
Helmholz free energy density y can be written as

¥ =y (0, Di) + PP (R) + Y (D). )

Here, y* is the elastic energy, " is the free energy due to plastic hardening and y* is the free energy due to
damage hardening. ¢! is an accumulated effective plastic strain and the variable D, is an effective measure of
damage.

The thermodynamic force Y; conjugated to damage is often referred to as the “‘damage energy release
rate’” and is defined by
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The force V; is regarded as the damaging driving-force and is understood to control the evolution of the
damage. This definition is analogous to the definition of “fracture energy release rate” commonly used in
theories of fracture mechanics.

Packaging paper materials are (as discussed in the introduction) considered as solids containing many
long fibres connected in a network. At any point, those fibres apply non-local actions. It seems reasonable
to assume that the mechanical state in one particular point in a fibre is dependent upon the mechanical
states in the neighboring fibre network, or along the fibre itself. Hence, beside the numerical arguments
discussed in Section 2.1, introduction of a non-local state variable is also supported by physical arguments
in fibrous materials.

The idea of Kroner (1967) and Eringen and Edelen (1972) of introducing non-local quantities into a
constitutive equation has been applied to continuum damage mechanics by several authors, among others
Pijaudier-Cabot and Bazant (1987). For the damage model discussed in this investigation, a gradient en-
hanced damage energy release rate Y; is introduced. Considering the local damage energy release rate Y; as a
state variable, Eq. (4) is restated as

Yi(x) — cAY,(x) = Yi(x), (10)

where ¢ = [>/2 and [ is the internal length scale of the gradient enhancement.
The natural boundary condition of a vanishing gradient along all the entire boundary I' of Q is used,

It is convenient to introduce the plastic hardening threshold H and the damage strengthening threshold R as
the thermodynamic forces associated with y* and ¥, respectively, i.e.

_dy? _dy

H = = .
de? dD.

and R

(12)

A decomposition of the Helmholtz free energy according to Eq. (8) yields the well-known Clausius—Duhem
inequality on a reduced form

‘D:O'ijdgg-—Hdﬁg—YidDi—RdDe20 (13)

where @ is the mechanical dissipation.

A common way of ensuring the fulfillment of the Clausius—Duhem inequality @ > 0 consists of pos-
tulating the existence of convex, continuous and scalar valued potential functions ¢ dependent on all the
thermodynamical forces with the internal state variables appearing as parameters, cf. Voyiadjis and Kattan
(1992). Within the assumption of independence of energy dissipations @ is divided into two parts
¢ = d° + ¢, where

P = g,del, — Hde? — /PP >0, (14)
and
@ = —Y.dD; — RdD. — %¢* > 0. (15)

Here, the plastic and damage multipliers 4°, 1* > 0 are introduced and they are determined by the con-
sistency requirements d¢P = d¢® = 0 together with the loading/unloading conditions ¢° = ¢ =0. As
indicated by Egs. (14) and (15) represents ¢° the plastic yield criterion and ¢ represents the damage
criterion.
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As the reduced Clausius—Duhem inequality fulfill @ > 0, meaning that the production of internal en-
tropy always is positive, the chosen model is admissible from a thermodynamic point of view. Hence, the
model is thermodynamically consistent.

2.3. Anisotropic plasticity

The plastic processes are commonly assumed connected to the effective stress space since the effective
stress ¢;; is referred to a surface in the material that really transmits the internal forces, (see amid others
Simo and Ju, 1987; Ju, 1989; Lemaitre and Chaboche, 1990; or Contrafatto and Cuomo, 2002).

Assuming the material axes of orthotropy coincides with the principal axes, Hill’s yield criterion (Hill,
1950) offers a convenient way to introduce anisotropic plasticity. The yield surface is in this case given by
the expression

¢ =6, — H<0, (16)
where &, is the anisotropic equivalent stress defined in analogy with the J,-flow theory of plasticity,
Ge = Gyo(gijpijkls'kl)l/z- (17)

The plastic threshold H (&) is as the maximum value that the anisotropic equivalent stress 6. has reached
during the deformation history (with the initial value oy), thus representing an isotropic strain hardening
plasticity behavior of the material. The isotropic hardening represents a global expansion in the size of the
yield surface with no change in shape. The threshold H can often be determined from experiments.

The deviatoric effective stress tensor is given by §;; = 6;; — ;;6/3. Here repeated index assumes sum-
mation and ¢;; is the Kronecker delta. The positive definite tensor P, for orthotropic materials can be
represented by a 6 X6 matrix P,

P12+ pis —Pi2 —P13 0 0 O

%V P12+ p» —p23 0O 0 O

_ —P13 —p3 ps+pz 0 0 0
P= 0 0 0 ps 0 0 (18)

0 0 0 0 ps 0

0 0 0 0 0 p

where pp», pi3, P23, ps, Ps, Ps are parameters characterizing the current state of plastic anisotropy. In the
particular case when 3pj, = 3pi3 = 3py; = ps = ps = ps = 3/ (2030) this yield criterion is reduced to the J; -
theory of plasticity.

The outward normal of the yield surface is given by

0¢” ‘730
=—PuSu. 19
6&ij &, kIS ki ( )

Normality of the plastic strain increment requires that

ok
Y aO'ij ( )
As the hardening is assumed being isotropic, A’ may be determined from a uniaxial tensile test with the test
specimen oriented in the material directions. Thus, AP is assigned different values depending on the direction
of loading. For a uniaxial tensile test in the x,-direction, consider the stress state ,; = ¢ = 6., all other
6; =0, and &, = &, + &, = & One finds
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_ 3oy
- 26E
where E is the elastic modulus in the loading direction of the material and E, = d6/d¢ is the tangent
modulus for the uniaxial tensile test at the stress level 6 = 6. > ay0.

Since d¢, = (o—f,o /6¢)$i;Pjud6y, the expression for the plastic strain increment déf} in a general form can
be written as

/‘LP

(E/E, — 1)dé, (1)

. 3‘740 JON N
dgf)/ =7 26'2yE (E/Et - 1)Pijklsklsmnpmnop do—opa (22)
[
where
1 forg.=H and dé. >0
7= { 0 else (23)

Assuming a modified uniaxial Ramberg-Osgood relation &é = 6/E + 0y0(6/0y)" the relation E/E, may be
written as

EJE, = (6:/0y0)" ", (24)

where n > 1 denote the hardening exponent in the test direction.

Generally, if the paper material exhibits different hardening behavior in different material directions and
the body is subjected to a multiaxial loading situation, the model needs to be extended with a model for
anisotropic hardening in which case multiaxial material parameters have to be invoked, cf. Xia et al. (2002).

The elastic strain increment in the effective stress space is given by d&f, = Cl.;kl,d&k,. The inverse of the
orthotropic stiffness tensor Cy; is on a 6 x 6 matrix format written as

E?l —Vlefl —V13E171 0 0 0
—VZIEEI E;l —V23E;l 0 0 0
| vaEst —vnEy! E;' 0 0 0
¢ = 0 0 0 2G,) ™" 0 0 (25)
0 0 0 0 (2Gy3) ™" 0
0 0 0 0 0 (2Gx)™!

where E; represents the in-plane elastic modulus, v; are the in-plane Poissons ratios and G;; denotes the in-
plane shear modulus.

The total strain increment in the effective space is given as the sum of the elastic and plastic strain
increments, dg; = d&j; + déf. Using the elastic stress—strain relationship, written in the form
do;; = Cyu(déy — def)), yields for plastic yielding

d6y; = Cydén — OC; 1 PumnSmnSopPopgrdGyr, (26)
where
o= 2% (EJE, - 1) (27)
20280

Multiplication of this expression by §;;P;; leads to an equation from which the inner product §;;P;,d6y, is
determined as a function of the effective strain increment dé,,,

Ai’Pi' C mn ~
Syliw S g (28)

8iiPidoy = P
1+ HSOpP opququtPStuL'SuU

Substituting Eq. (28) into Eq. (26) gives the well-known elastic—plastic incremental stress—strain relation
da—ij = Cij.vtdéxt - ﬂCijkIPklmngmngoanpqrCqmtdgst = CCp dés’la (29)

ijst
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where Cj}, is the incremental elastic-plastic stiffness tensor in the effective space and
0

= 1 + Qgijpijklcklmnpmnopgop

0 else.

for 6. =H and dg. =0,

2.4. Anisotropic damage evolution

Assuming that the material axes of orthotropy coincides with the principal axes, a damage criterion in
the form of a quadratic homogeneous convex function of the gradient enhanced damage release rate Y;
offers a convenient way to model orthotropic damage evolution,

¢ =7, - R<0. (31)

One may note the similarity between Eq. (31) and the corresponding criterion for plastic flow, Eq. (16). The
equivalent non-local damage energy release rate Y, is defined as

Ye = (Yi;Y,/2)", (32)

where J;; is a second order positive damage characteristic tensor that will be discussed later.

The threshold R(D,) is interpreted as the maximum value that Y, has reached during the deformation
history (with the initial value Y;), representing a damaging hardening material.

The criterion in Eq. (31) was initially introduced on local form by Cordebois and Sidoroff (1982) and
further discussed in Chow and Wang (1987), Hansen and Schreyer (1994) or Zhu and Cescotto (1995)
among others. It should be underlined that the only difference between the present criterion and the cri-
terion introduced by Cordebois and Sidoroff (1982) is the presence of the non-local damage energy release

rate Y,, which is the non-local counterpart of the local damage energy release rate Y; = —6,,,C,,),,064/3D;
(Eq. (11)).
Using an associated law, normality of the damage increments requires that
06°
dp, — -9 (33)
and
Gl
D, = -2 —"—. 34
¢ R (34)

The multiplier 2* can be determined from experiments by applying the consistency requirement d¢® = 0
and the loading/unloading condition ¢ = 0.

The damage characteristic tensor J;; has been extensively discussed in the literature and many formu-
lations have been suggested. A comprehensive review of the most widely used expressions is presented in
Voyiadjis and Park (1997). However, a symmetric damage characteristic tensor J;; of second order,
introduced by Zhu and Cescotto (1995), is believed to be applicable for the circumstances discussed here.
The characteristic tensor J;; is on 3x3 matrix format written as

&1 i (g1g2)1/2 (g1g3)i/z
I=21(a)"? & (08)"] (35)
1/2 1/2
(8183) / (8283) / &3
Here, g; depends on the damage evolution history in the material in direction i.

For an equivalent damage formulation, the total damage work  performed at time ¢ should be the same
as the equivalent damage work performed at time ¢, i.e.
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Di(r) De(t)
0 0
Then, according to Zhu and Cescotto (1995),
g =(Y/Y). (37)

Two different damage evolution laws is utilized in the present investigation:

(i) A linear damage evolution law on the form (cf. Zhu and Cescotto, 1995),

dD,
— = k.. 38
dY. (38)
(i) An exponential damage evolution law on the form (cf. Geers, 1997),
dD
— = (1 — D). 39
7 = k(=D (39)

Here, k. is the equivalent damage hardening value.

3. Numerical implementation

The above-described constitutive relations have been used to analyze the mechanical behavior of paper
materials. The governing equations have been solved using the finite element method. The finite element
computations have been performed with the mathematical program Matlab (2002). A state of plane stress is
considered throughout in the computations.

The constitutive laws described in the preceding sections have been implemented for a two-dimensional
solid material element. Four-node isoparametric elements, with two degrees of freedom, translation in the
x1- and x,-directions, have been utilized.

Pertinent material property data for the various materials, obtained in tensile tests, have been used in the
simulations.

An iterative technique has been employed to solve the discretized equilibrium equations for each load
step. The result obtained after each iteration then correspond to estimates of the incremental displacements
from which the currents stress and strain states can be computed at the integration points of each finite
element, as well as estimates of the non-local damage energy release rate. The deformations are assumed to
remain small, so all derivatives and integrals are evaluated with respect to the initial topology of the
considered body.

A modified Newton—Raphson iteration scheme for the solution of non-linear finite element equations
has been employed (cf. Bathe, 1982). The governing finite element equation is

KA=R-F, (40)

where K is the global stiffness matrix, A is the global vector consisting of nodal displacement variables and
non-local damage energy release rates, R is the vector of externally applied nodal point loads and F rep-
resents the vector of nodal point forces equivalent to the element stresses. It should be noted that at each
node the displacement field, as well as the non-local damage energy release rates, are represented by vec-
torial fields.

The finite element implementations follows mainly the ones discussed in Peerlings et al. (1996) and Geers
(1997) for the enhanced gradient model. For easy-to-use manuals of the implementations the reader is
advised to Peerlings et al. (2000) or Geers (1997).
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The relation in Eq. (40) is employed to calculate increments in the displacements and non-local damage
energy release rates, which then is used to evaluate approximations corresponding to time (or load step)
t+ At,

t+AtK(i—l)AA(i) _ AR z+AzF(i—l), (41)
where
t+AtA(i) _ H—AtA(i*]) + AA(I')_ (42)

The superscript (i) denote the iteration number value and the vector AA"” represents the increment in the
solution variable at iteration (7). This results in a system of linear algebraic equations, which are solved at
each equilibrium iteration. The iterations are continued until appropriate convergence criteria are satisfied
(cf. Bathe, 1982; or Cook et al., 1989).

As a consequence of the assumption that the relation between the stresses in the damage space and the

effective space is given by g;; = Z\/Ii;kll(}k,, a linearized expression for the stress increments at load step ¢ + Az
of the stress tensor o;; is obtained as

A AGy = OMZY Y NGy + O AM 6y (43)

4. Experiments

Two types of commercial packaging paper were investigated in terms of load—elongation curves. The
objective was to determine the applicability of the model derived. Of particular interest is transferability, i.e.
that one set of model parameters can describe the mechanical response of significantly different geometries.

4.1. Test set-up and test procedure

An MTS Universal Tensile Testing Machine, equipped with a pair of wide clamps, was used to measure
the load-clongation response, Fig. 3. Locking pins at the center of the front jaws keep the clamps in an
open position during mounting of the specimen. After positioning of the specimen the upper and lower
clamp are closed and the pressure is applied by tightening four equally spaced quick-acting locking nuts
along the front of each clamp. The largest sample that can be accommodated is 420 mm wide.

Quick-acting Upperclamp  Load cell
lock nuts

Upper
crosshead

A A A A

Traversing
crosshead

Fig. 3. Universal tensile tester equipped with a pair of wide clamps.
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The load frame is equipped with a 2 kN load cell. Specimens were tested by traversing the lower cross-
head down to place the sample under increasing load at a constant cross-head speed at nominal strain rate
of 20%/min. The samples were pre-loaded up to 1 N, before recording of data started.

During testing, both displacement and load was monitored and recorded. The load was measured by the
load cell and the elongation by recording the cross-head movement. A computer was used to control the
load frame and also to record data during the testing. All tests were run to failure.

Mechanical testing of paper must be carried out under humidity and temperature control, in order to
obtain reproducible results since paper is strongly influenced by moisture. The climate used was 23 °C and
50% RH and is in accordance with ISO 187. The samples were conditioned for at least 48 h in this climate
prior to testing.

4.2. Materials and manufacturing of the specimen

Two types of packaging paper materials were examined. One denoted Kraftliner, i.e. paper mainly made
of unbleached sulfate pulp, and one denoted Testliner consisting entirely of recycled fibres. Some important
properties of the material are listed in Table 1.

Standard methods were used to test structural properties. The standards used are ISO 534 for thickness
and ISO 536 for basis weight.

Four different specimen geometries have been used: a rectangular geometry having a width of 15 mm and
a gauge length of 100 mm, a specimen with a notch radius of 5 mm, width 50 mm and a gauge length of 10
mm, a specimen with a semi-circular notch of radius 5 mm having an outer width of 50 mm and a gauge
length of 40 mm, and a specimen with a semi-circular notch of radius 31.75 mm having an outer width of
133 mm and a gauge length of 126 mm. The specimens, illustrated in Fig. 4, are from now on denoted
specimen -1V, respectively.

Table 1
Some material properties
Thickness Basis weight Average fibre length Recycle fibre content Virgin fibre content
Kraftliner 0.164 mm 125 kg/m? 1.25 mm 30% 70%
Testliner 0.185 mm 127 kg/m? 1.06 mm 100% 0%

50 mm

| } o

100 mm R=5mm

126 mm

40 mm v A
\_/

50 mm

133 mm

R=5mm R=31.75mm

Fig. 4. Considered specimen (I-1V) geometries.
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The notched samples were used in order to control the localization of failure. Two different sizes of
notched specimens (III and IV) have been used in order to evaluate the transferability between different
geometries.

The specimens denoted I and IV were fabricated using a razor knife, whereas specimens II and IIT where
manufactured using a punch. Normally five specimens of each type were tested in each in-plane material
direction, i.e. both in MD and CD.

5. Limitations and general and additional assumptions

As discussed in the experiment section, the Kraftliner paper specimens are about 0.164 mm thick,
whereas the Testliner paper specimens are about 0.185 mm thick. Hence, as the thickness of the specimens is
negligible in comparison to the width and the lengths of the specimens, a state of plane stress is considered
throughout the computations.

For simplicity, the material is assumed to have the same behavior in Z as in CD, which significantly
reduces the complexity when determining the material parameters.

It is possible to identify at least two damage processes for paper materials, e.g. fibre/fibre bond failure
and fibre breakage. In this study it is assumed that there is one dominating damage process during tensile
loading of a paper structure, even though there is nothing assumed about the nature of it.

If the material exhibits different hardening behavior in different material directions and the body is
subjected to a multiaxial loading situation, the model needs to be extended with a model for anisotropic
hardening whereupon new material parameters have to be invoked.

6. The model
6.1. Calibration of the constitutive model and determination of material parameters

The calibration procedure of the constitutive model is briefly explained here. Because the model is two-
dimensional, only in-plane material constants needs to be determined. The model parameters were deter-
mined using load—elongation curves obtained for the two different specimens I and II (see Fig. 4).

The materials were tested in both in-plane material directions, i.e. both MD and CD.

The specimen denoted specimen I is a slender geometry resulting in an approximately uniaxial stress
state when loaded in tension. This type is used for determining the elastic constants of the material and to
estimate the initial yield stress and hardening parameters of the plasticity model. Values of the Poisson’s
ratios have been taken from literature (Baum et al., 1981) together with the demands of symmetry imposed
on the stiffness tensor Cyjy, i.e. v21/E) = vi2/E>. The in-plane shear modulus G, is assigned the value

EE 1/2
G = (1—2)1/2’ (44)
2[1 + (V12V21) ]

following the results reported by Szilard (1974). The in-plane yield shear stress is in all computations as-
signed the value 37/2q,, cf. Hill (1950).

The damage hardening parameters were obtained from the descending part of load—elongation curves,
obtained in tension tests using specimen II. This part of the curve can only be obtained if the damage
process is stable (or semi-stable). In a stable damage process, the stress continuously decreases as the
displacement is increased up to total separation of two fracture surfaces. For packaging paper materials,
this behavior can only be obtained at a relatively short gauge length, cf. Tryding (1996). If the gauge length
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is too long, lots of elastic energy will be stored in the specimen prior to peak load and released in an
unstable manner at a post peak-load elongation. Specimens denoted specimen II has been used in order to
measure the load—elongation response in the descending regime. These specimens proved to be capable of
generating stable descending curves for the considered materials.

A numerical procedure has been implemented in order to fit the equivalent damage hardening para-
meters k. to the measured load—elongation curves.

6.2. Boundary conditions

The symmetry of the specimens and the loading conditions allow us to model only a quarter of the
specimen geometries. The dimensions for a portion of the test specimens I and II, in the x;- and x,-
directions, are as shown in Fig. 5.

The natural boundary condition of a vanishing gradient is adopted on all edges,

In addition to the boundary condition in Eq. (45), the edges A, B, and C are subjected to the boundary
conditions

A u:012:O,
B: v=0,=0, (46)
C: v=0 and u=U.

The displacements « and v are in the x;- and x,-directions, respectively. The normal traction is zero only
along edge D, which is the only traction free surface in the model.

At edge C the nodes are constrained to a straight vertical line between the two corner nodes, which are
given the prescribed displacement U. All the nodes along edge C are also constrained to have zero dis-
placement in the x,-direction, i.e. v = 0 along C. To preserve vertical compatibility, the nodes along edge
A are constrained to have zero displacement in the x;-direction, i.e. u = 0 along A.

In addition, the nodes along edge A are free to move in the x,-direction.

As a result of the imposed boundary conditions on specimen I, the stress field is nearly homogeneous
leading to a simultaneous initiation of damage growth throughout the specimen. To avoid this, an initial
imperfection is introduced in the specimen in a small region in the center of the specimen in order to trig
and localize damage initiation. The region containing an initial imperfection, or damage, of D; = D, = 0.02

7]
|
|
P
|
(I I
v x I I X
—_ 2 | | 1
_________ | |
J
0 _)
x B
| B
75mm A C Al \|C |25 mm
4 D
50 mm R=5mm’(D

Fig. 5. Schematic representations of portions of the modeled test specimens I and II.
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occupies the region 49.0 < x; < 50.0 mm and 6.43 < x, < 7.5 mm, corresponding to a fraction of 0.3% of the
total specimen volume.

6.3. The characteristic length [

Generally, mesh refinement leads to localized deformation in a region of decreasing volume if damage is
invoked in the constitutive equations. When the gradient enhanced approach is adapted (i.e. / > 0) this
problem is avoided and the density of the finite element mesh is not crucial, cf. Geers (1997) or Kuhl and
Ramm (1999). Hence, the constitutive model requires a material parameter / of dimension length (i.e. a
characteristic length that controls the extent of the zone in which localization occur). However, there exist
no obvious physical interpretation of this parameter. It is desirable to find an inherent property of the
material that can be related to this parameter.

Fig. 6 shows a SEM picture of a damaged region in a Testliner specimen III loaded in CD until failure.
An intuitive choice is to relate the gradient length / to the mean fibre length in the material. This
assumption has to some extent support from previous investigations. Niskanen et al. (2001) showed in an
experimental investigation, that the width of the damage band, developing when a paper specimen is loaded
in tension until failure, is governed by the fibre length. Their experiments were conducted on so-called
handsheets, i.e. in-plane isotropic sheets manufactured in a laboratory environment.

Niskanen et al. concluded that the damage width is linearly proportional to the mean fibre length.
However, the authors underlined that the damage width also can be affected by other factors such as the
mechanical properties of the fibres and manufacturing conditions.

As the fibre length average (see Table 1) for Kraftliner and for Testliner both are on the same order of
magnitude (=1 mm) one expects, according to the results reported by Niskanen et al. (2001), that the
characteristic length / is almost the same for Kraftliner and for Testliner.

During the course of this investigation, it has been found that the value / = 2 mm generates reasonable
correspondence between the experiments and the numerical analysis for both Kraftliner and Testliner. This
result indicates that the characteristic length parameter in a gradient enhanced approach can be related to
the average fibre length in the paper material as the value of / equals approximate / =~ 2/; where /; is the
average fibre length.

6.4. Results of parameter estimation

The experiments have been analyzed in a FE model in order to verify the measured material parameters.
The finite element meshes used for the material parameter verification computations are shown in Fig. 7.

Fig. 6. Damaged region in a Testliner specimen I11 loaded in CD. The magnification of the sample is 80x and the length indicator in the
black area corresponds to 0.5 mm.



4746 P. Isaksson et al. | International Journal of Solids and Structures 41 (2004) 4731-4755

Fig. 8 displays load—elongation curves obtained from the uniaxial tensile test using specimen I made of
the two paper materials and loaded in MD and CD, respectively, together with numerical results. The

x, [mm]

x, [mm]

0 5 10 1! 2 5 35 A 5 50
x, [mm]

5
x, [mm]

Fig. 7. Finite element meshes used for the material parameter verification. The meshes consists of 350 elements (specimen I) and 92
elements (specimen II).
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Fig. 8. Load-elongation curves obtained from the uniaxial tensile tests using specimen I made of Kraftliner (a) and Testliner (b).
Computed results are also displayed.
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exponential damage evolution law in Eq. (39) has been utilized. The computed onsets of damage growth are
also indicated. As Fig. 8 illustrates, excellent agreement prevails between the measured load—elongation
curves and the numerical results.

The experimentally obtained descending curves using specimen II are compared to numerical results
from FE computations (Fig. 9) when three different values of the equivalent hardening parameter k. have
been employed (k. = 1,5,20 (MPamm)~! for Kraftliner and k. = 10,20,30 (MPamm)~! for Testliner).

A conclusion one may draw from Fig. 9 is that an equivalent damage hardening value k. =5
(MPamm)~' for Kraftliner and k, = 20 (MPamm)~' for Testliner describes the damage hardening in the
specimen reasonable well in both MD and CD. For simplicity, the damage hardening is assumed to be the
same in the principal directions of the material (compare with isotropic strain hardening), i.e. ky = k, = k..

The material parameters determined from tensile experiments using specimens I+ II and by numerical
studies are summarized in Tables 2 and 3 (MD is along the x;-direction).

© - Experiment

A4 — FEM © - Experiment

— FEM

Normalized force P
Normalized force P

0 02 04 06 08 1

2 3
(a) Displacement U [mm] (b) Displacement U [mm]

© - Experiment o Experiment
Jk — FEM ik — FEM

o8- o8-

o6

k =30 =20 =10
e e

Normalized force P
- =
Normalized force P

02 e 02}

o o1 o2 o3 o1 o5 o o 5 1 15
(c) Displacement U [mm] (d) Displacement U [mm]

Fig. 9. Numerical results obtained with different values of the hardening parameter k. compared to experimentally obtained descending
curves. Kraftliner loaded in MD (a) and CD (b). Testliner loaded in MD (c) and CD (d).

Table 2
Material parameters obtained from tensile experiments using specimen I
Kraftliner Testliner

E; 1280 MPa mm 900 MPamm
E, 470 MPamm 400 MPamm
Via 0.46 0.46
a3 4.5 MPamm 3.6 MPamm
) 2.0 MPamm 1.8 MPamm
n 1.8 22

ny 3.0 4.8
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Table 3

Material parameters determined by numerical studies using specimen I + I1. The initial threshold parameters for damage growth in the
x;- and x,-direction are denoted Y}, and Y»y respectively

Kraftliner Testliner
Yo 0.16 MPamm 0.11 MPamm
Yoo 0.05 MPamm 0.04 MPamm
ke 5 (MPamm)~! 20 (MPa mm)~!
1 2 mm 2 mm

6.5. The damage evolution law

Two damage evolution laws implemented have been compared; the linear evolution law (Eq. (38)) and
the exponential evolution law (Eq. (39)).

The total evolution of the equivalent damage D, at time ¢ according to the two laws is slightly different.
For the linear evolution law one have (Y} is the initial damage threshold value)

De(t) = ke[Ye(t) - YO]a (47)
and for the exponential evolution law one have
De(f) = 1 — g *(:00-%), (48)

The last mentioned damage law is naturally bounded meaning that it allows continuous description of fully
damaged material as the resulting damage is close to (but remain smaller than) 1. Hence, the exponential
damage evolution law is particular convenient from a numerical point of view since it allows the stiffness
matrix of the structure to remain regular.

This feature can also been seen in Fig. 10 where normalized load—elongation curves for a specimen II
loaded in CD and made of Testliner is displayed. When using the exponential evolution law, the computed
load—elongation path is smooth and follows the descending part down to total breakage of the specimen. In
contrast, when the linear damage law is used the stiffness matrix becomes irregular at an earlier load step,
leading to an earlier (modeled) breakage of the specimen.

o Experiment
1k — FEM

08

3

Linear damage evolution law

o
)
T

Normalized force P
°
I

Ol
02 Exponential damage evolution law

o L L L L L L
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9

Displacement U [mm]

Fig. 10. Normalized numerical results obtained utilizing the two damage evolution laws, Egs. (38) and (39), compared to an experi-
mentally load-elongation curve. The Testliner specimen II was loaded uniaxially in CD.
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It can be mentioned here that an ongoing laboratory investigation by the authors (Gradin and Isaksson,
submitted) reveals that the exponential damage evolution law utilized is supported by acoustic emission
monitored experiments on uniaxial tensile loaded isotropic paper sheets.

As can be seen in Fig. 10 does the exponential damage evolution law capture the descending part rea-
sonable well and this lends confidence to the chosen model.

7. Verification of the model

Of particular interest is transferability, i.e. that one set of model parameters can describe the mechanical
behavior of significantly different geometries. Experiments, as well as numerical analyses, have been made
using specimens III and IV (illustrated in Fig. 11) in order to investigate the transferability.

The boundary conditions are as in Egs. (45) and (46). The finite element meshes for specimens 111 and IV
are as shown in Fig. 12.

In all the computations the material is modeled as an orthotropic material with an elastic—plastic yield
criterion (Eq. (16)) and a damage criterion (Eq. (31)). The material parameters are as presented in Tables 1—
3 and an exponential damage evolution law is utilized (Eq. (39)). The specimens, both in Kraftliner and
Testliner, are loaded in MD and CD.

C | 66.5mm

R=31.75 mm
D

63 mm

Fig. 11. Schematic representation of portions of modeled specimens III and IV.
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Fig. 12. Meshes consisting of 800 (specimen I1I) and 220 (specimen 1V) elements, respectively.

7.1. Analysis of results

Fig. 13 presents computed load—elongation curves together with experimentally obtained curves for the
discussed specimens, materials and loading directions. In each plot, the four cases belonging to the same
material are displayed. Also displayed are the computed loads for onset of damage growth marked.

The exponential damage evolution law used seems to describe almost entirely correct the descending part
of the load—elongation curves. As can be seen in Fig. 13, the numerically obtained and the experimentally
measured load—elongation curves show good agreement.

From now on, we restrict the presented results to specimen I1I only. The results obtained in analyses on
specimen IV are similar and, for the sake of clarity, excluded in the following discussion.

Fig. 14 show typical damage distributions in specimen III calculated for the considered loading cases.
The damage component displayed is the largest of D; and D,. The plots presented in Fig. 14 are contour
plots showing the damage at the load step when the first element becomes fully damaged (=onset of
breakage), i.e. when max{D;,D,} — 1. Note that only contour lines corresponding to damage levels of 0.2,
0.5 and 0.8 are shown.
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Fig. 13. Load-elongation plots for specimens III and IV. The numerical results are displayed together with experimentally obtained
values. Kraftliner (a) and Testliner (b).

It can also be noted in Fig. 14 that the damage is more concentrated to the interior of specimen 11T when
the specimen is loaded in CD than in MD. When the specimen is loaded in MD, the highest level of damage
is located close to the boundary of the notches, whereas when the specimen is loaded in CD the highest
levels of damage is located at about 1/2 mm (Kraftliner) and 1 mm (Testliner) from the notch boundary.

Fig. 15 shows computed damage evolutions at the point in the material that exhibits the highest level of
damage for respective loading case. The results are calculated at different locations in the modeled
geometry, depending on loading direction and paper material, according to Fig. 14.

When the specimen is loaded in CD is max{D;} > max{D,}, whereas the opposite holds when the
specimen is loaded in MD. Hence, if damage growth has occurred, the computed levels of damage are
always equal or higher in the cross-direction of the material than in the machine direction, independently of
loading direction.

To illustrate the problem of localization, a comparison of the total damage growth of D; when / =0
and / = 2 when utilizing two different mesh densities is shown in Fig. 16. In this particular case is a Kraft-
liner loaded in CD until complete breakage. As indicated in Fig. 16, mesh refinement leads to localized
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Fig. 14. Damage contours immediately before onset of breakage of specimen III. Kraftliner loaded in MD (a) and CD (b). Testliner
loaded in MD (c) and CD (d).

Testtliner loaded in CD

Max damage D
o oo o0 o o o o
S 82 a5 % &8

Displacement U [mm]

Fig. 15. Damage evolution history in specimen III during loading. Note that the presented results are computed at different locations in
the geometry, depending on loading direction and material.

deformation in a region of decreasing volume along the x,-axis. When the gradient enhanced approach is
adapted, i.e. [ > 0, this problem is avoided. The region of localization is stretched over several elements and
the density of the finite element mesh is not crucial.
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Fig. 16. Damage contours at complete breakage of specimen III. Kraftliner loaded in CD. Only contour lines corresponding to
Dy = 0.95 are displayed. Mesh consisting of 392 elements (a) and mesh consisting of 800 elements (b).
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Fig. 17. Relative equivalent stress contours immediately before breakage of specimen III. As the area is darker the stress is higher.
Kraftliner loaded in MD (a) and CD (b). Testliner loaded in MD (c) and CD (d).

In Fig. 17 are the relative Hill equivalent stress 6./ max{é6.} contours displayed for the same cases as in
Fig. 14. The highest concentration of equivalent stress g, is located immediately at the notch boundaries in
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the specimens. However, when the specimen is loaded in CD, the region with the highest equivalent stress
concentration is larger in size and concentrated to a narrow band around x; = 0 along the x,-axis.

When the specimen is loaded in MD, the region with the highest concentration of equivalent stress g, is
located at the notch boundaries and concentrated to a smaller region in comparison to when the specimen is
loaded in CD. It is worth noticing that the plastic strains are relatively larger in the interior of the specimen
when it is loaded in CD as compared to when the it is loaded in MD. This may have consequences for the
subsequent crack nucleation that has been observed in the experiments, as high density of plastic strains is
detrimental to the integrity of the specimen.

8. Conclusions

The mechanical behavior of two packaging paper materials subjected to tensile loading up to complete
breakage has been studied.

A model for isotropic strain hardening elastic anisotropic plasticity, coupled to anisotropic damage, is
discussed. The model has been analyzed in a non-linear finite element procedure.

The constitutive relations, including a gradient enhanced damage model, are developed within a ther-
modynamical framework and the Helmholtz free energy in the continuum is assumed to depend not only on
the strain and stress components but also on the damage in the material.

The following conclusions are made:

e The capability of the model to properly capture and simulate the damage mechanism of a paper material
is demonstrated by means of several numerical examples which are compared to, and verified with,
experiments on paper specimens of varying geometry.

e The results demonstrate the ability of the model to model irreversible deformations up to complete
breakage of tensile loaded paper specimens.

e The model can be calibrated using load—elongation curves obtained from tensile testing.

e The exponential damage evolution law utilized seems to describe the descending part of load—elongation
curves reasonable well.

o The density of the finite element mesh is not crucial as an introduction of a material characteristic length
fixes the width of the zone in which damage localizes, thus preventing strain localization into a vanish-
ingly small region with zero energy dissipation.

e The results indicate that a characteristic length parameter in a gradient enhanced approach can be re-
lated to the average fibre length in a paper material. It has been found that a value of / equals approx-
imate [ ~ 2/; where [; is the average fibre length, generates reasonable correspondence between the
experiments and the numerical analysis.
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